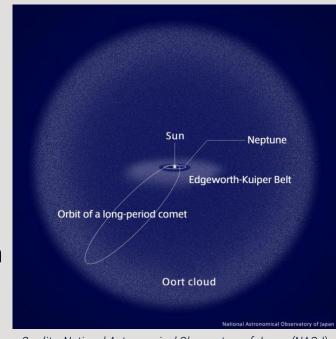


Scientific mission for Comet Observation, Research and Exploration


WHY LONG PERIOD COMETS?

- Long Period Comets are celestial bodies with an orbital period greater than 200 years.
- Long Period Comets have not been contaminated by the various passages in the Inner Solar System.
- Long Period Comets have never been deeply explored by previous missions.

- Deeper knowledge about the cometary environment
- Deeper knowledge about comets

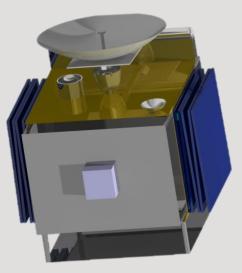
SCORE has been designed with the purpose of intercepting a Long Period Comet in a **flyby scenario** with the use of a **micro-satellite**

Credits: National Astronomical Observatory of Japan (NAOJ)

WHY SCORE?

SCORE makes use of a micro-satellite with limited mass and size.

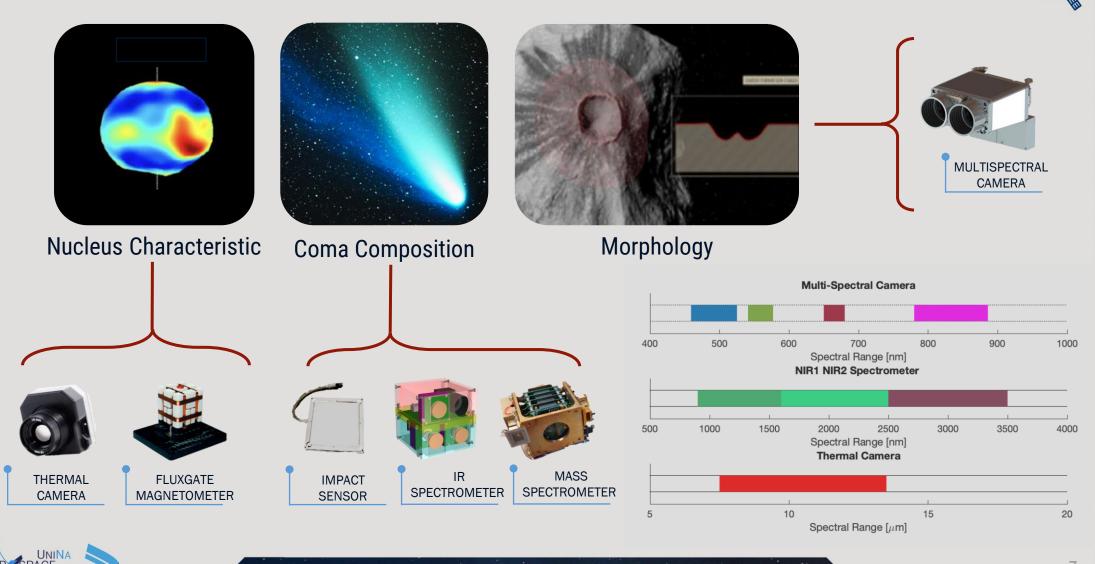
- Deep space exploration missions have been dominated by large satellites.
- Micro-satellites have been popular in the last decades, but mostly for *Earth Orbiting systems*.



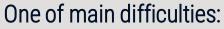
SCORE mission will be an important test bench for new technologies and subsystems for micro/nano-satellites:

- Only few others deep space exploration missions used microsatellites (e.g. MarCO mission)
- Electric Propulsion is an innovative technology that can highly increase the maximum distances reachable by micro-satellites.
- The **Shielding against micrometeoroids** provides reliable protection with a limited mass.

HT400 Electric Thruster



MISSION OBJECTIVES


Space Mission Design - SCORE

MISSION OBJECTIVES

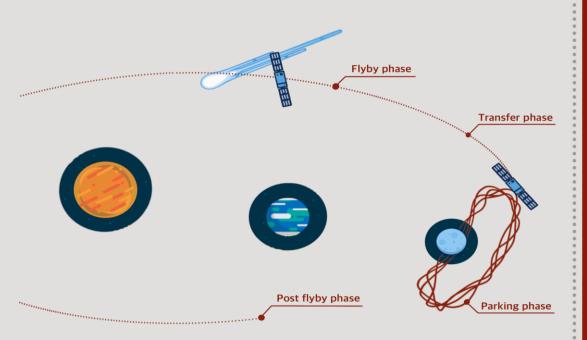
Space Mission Design - SCORE

MISSION OBJECTIVES

- ٠
- The **target** Long Period Comet **is uncertain** It can be discovered only some years prior to its • passage at the perihelion

Need of back-up targets to guarantee a meaningful scientific return of the mission

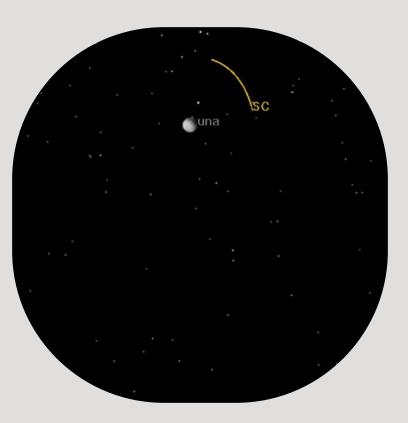
Back-up target	Orbital period (years)	q (AU)	e	i (deg)	Flyby date (mm/yyyy)	Encountered by:
67P/Churyumov- Gerasimenko	6.45	1.24	0.641	7.04	09/2034	Rosetta (2014)
8P/Tuttle	13.61	1.03	0.820	54.98	03/2035	/
26P/Grigg-Skjellerup	5.31	1.12	0.633	22.36	06/2034	Giotto (1992)
9P/Tempel	5.58	1.54	0.510	10.47	04/2033	Deep Impact (2005) Stardust (2011)
7P/Pons-Winnecke	6.37	1.26	0.634	22.29	09/2033	/



MISSION PHASES

Space Mission Design - SCORE

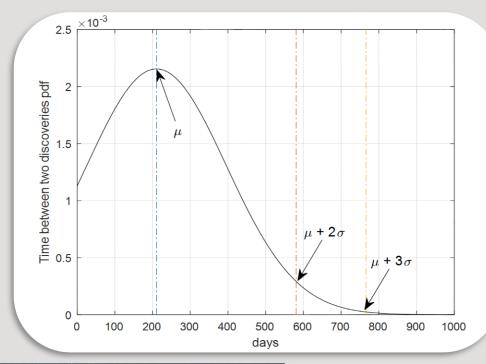
MISSION ARCHITECTURE


- Mission deployed **during 2029** in the cis-lunar space
- Single spacecraft with a wet mass of 100 kg
- Region of interest for the flyby = Sun-centred annulus with radius in between 1 and 1.58 AU
- Mission deployed on an L2 southern Near Rectilinear Halo Orbit (NRHO)
- The lifetime of the mission shall not exceed 6 years

PARKING PHASE

- 16000 km perilune radius is chosen for the starting orbit with a period of 9.65 days.
- The NRHO is stable for more than 1000 days without station keeping maneuvers.
- The starting orbit exhibits a **3:1 resonance**.
- Eclipses occur every **1-2 lunar synodic periods** and their duration is short (~*160 min*).
- The magnitude of the Station Keeping maneuvers is very low (<u>1 m/s per year</u>).

PROBABILISTIC ANALYSIS


Probabilistic analysis starting from the orbital parameters of **already known** comets <u>necessary</u> to derive a possible orbit of a **generic LPC** that will pass through the plane from 2030.

The time between two discoveries has been evaluated from this probabilistic analysis.

The *maximum* time between two discoveries is equal to 2.1 years.

If in this period **no targets** are discovered a transfer towards a **back-up target** shall be planned.

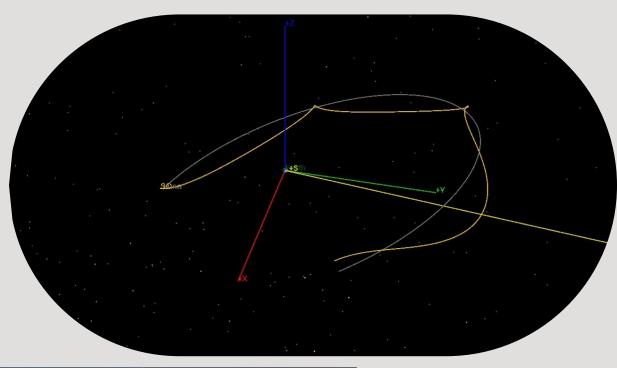
μ [days]	210
σ [days]	185
Maximum time between two discoveries [days]	765
Maximum time between two discoveries [years]	2.1

DEPARTURE PHASE

DEPARTURE FROM THE MOON

- The **Moon** shall be *in between* the Sun and the Earth.
- High NRHO perilune radius → high altitudes comparable to the Moon Sphere of Influence (SOI).

Suitable target detected in 2.1 years → satellite leaves the NRHO.

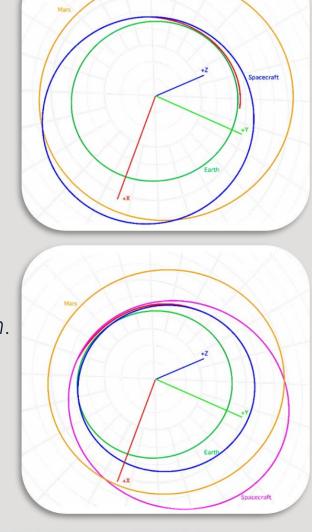

Departure maneuver opportunity once every <u>29.5 days</u>

Departure performed with **chemical propulsion** (monomethylhydrazine + mixed oxide of nitrogen MON-3)

- Departure delta-V to leave the Moon SOI is low (<u>30-40</u> <u>m/s</u>).
- Departure delta-V to leave the *Earth SOI* is of about <u>200 m/s</u>.

DEPARTURE FROM THE EARTH

- Impulsive maneuver to enter on a transfer Ellipse.
- Boundary of the *Earth's SOI* reached in **30.5 days**.
- Impulse of **small magnitude** *concludes* the departure phase → the *interplanetary transfer* towards begins.



TRANSFER PHASE

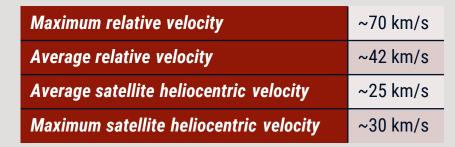
- The interplanetary transfer is performed with **electrical propulsion** (*Xenon propellant*).
- Two strategies are proposed:
- 1. Single finite burn Reaching a maximum distance of <u>1.39 AU</u> from the Sun in about <u>1.5 years</u>.
- Double finite burn Reaching a distance up to <u>1.58 AU</u> from the Sun. The maximum transfer time is of <u>2.6 years</u>. The delta-V necessary for this strategy is of about <u>3250 m/s</u>.

The two strategies differ in terms of **transfer time**, with the first requiring *less time* than the second but covering a *smaller region*.

Depending on the **particular mission scenario**, one strategy may be preferable to the other

Single finite burn strategy

Double finite burn strategy

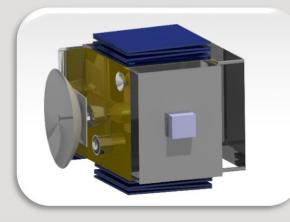

FLYBY PHASE

Flyby start: Payload instruments detect the first scientific data Flyby end: Payload instruments not able to detect data anymore. Maximum data obtainable: ~350 GB

Main role: <u>relative velocity</u> of the satellite with respect to the comet.

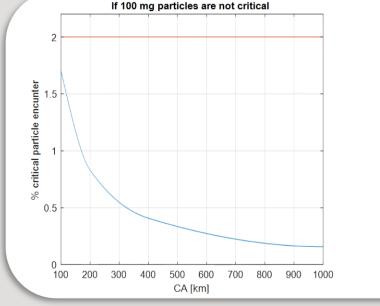
- Closest approach (CA) distance: ~600 km (nominally)
- Stabilization ensured for:
- Small particles impacts (\leq 10 mg) striking uniformly the satellite
- **100 mg** particles impacts up to a CA distance of 600 km for *1 wheel failure*

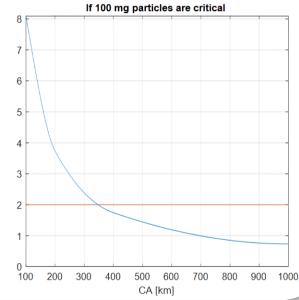
Chosen reaction wheels provide 1 N m s angular momentum



COMETARY ENVIRONMENT

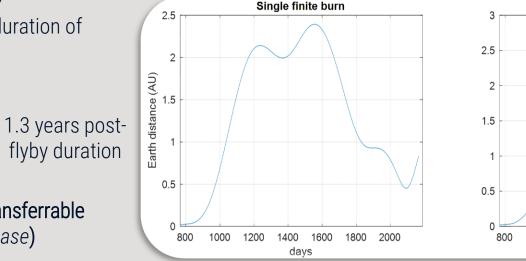
- **Cometary environment** simplified model made starting from Giotto and Rosetta observations.
- **Probability of impact** for particles of a given mass has been obtained for different CA distances.
- 100 mg particles are not critical up to flyby velocities of 64 km/s.
- For higher velocities, the CA distance shall be increased.




Double Whipple Shield with:

- 2.5 mm *Kevlar* wall
- 0.3 mm *aluminium* bumper
- 13 cm spacing

Designed through ESABASE2


POST-FLYBY PHASE

Data transmission time = 8 hours a day Duration of the phase depends on the duration of other phases

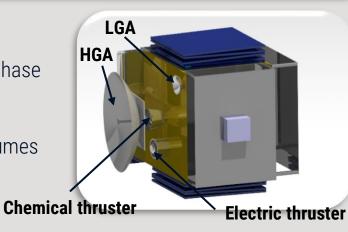
Simulation performed (worst case):

- Parking phase lasts 2.1 years
- Transfer phase lasts 2.6 years

30 GB data transferrable (worst case)

1200 1600 1000 1400 1800 2000 days

Double finite burn


Telecommunication characteristics:

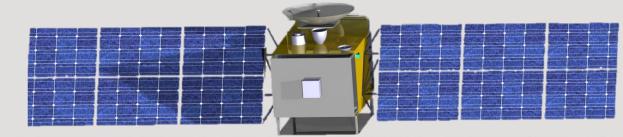
- 8.4 GHz X-band High Gain Antenna for data transmission
- 8.4 GHz X-band Low Gain Antenna for telemetry & command during the parking phase

flyby duration

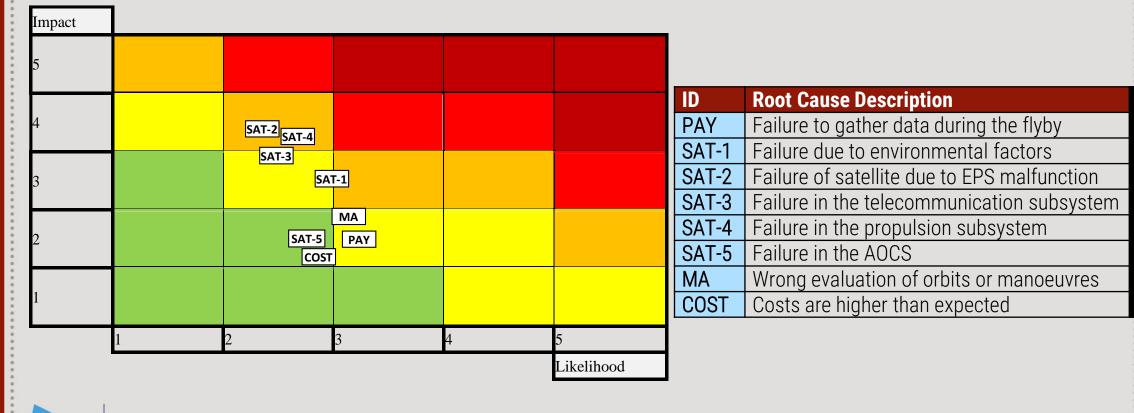
- IRIS V2.1 X-band transponders for signal modulation
- Travelling Wave Tube Amplifier to amplify the power transmitted
- HGA mechanism to protect the antenna from cometary dusts and/or thruster plumes

SPACE SEGMENT DESCRIPTION

Space Mission Design - SCORE


SPACE SEGMENT DESCRIPTION

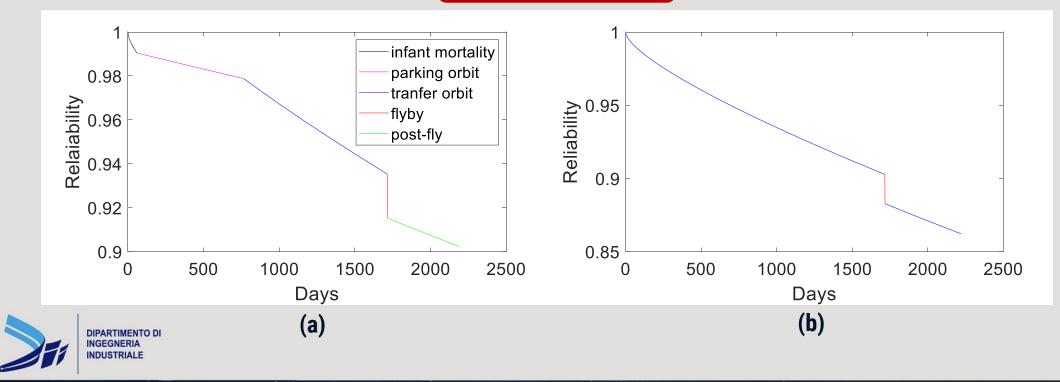
- Different mission concepts selected through a System Engineering approach
- Analytic Hierarchy Process to perform trade-offs and select the final concept
- Mass & power margins taken into account according to AIAA Regulations
- Rough cost estimated of 35 M\$ (includes all mission operations costs)


Mass Budget [kg]			Power Budget [W]							
Structure	13.2			Parking	arking Transf		er Flyby		Comm.	
Thermal Subsystem	0.810		No Margin	83	324		108	1	68	
Attitude Control	6.86		Margin	45%						
Power Subsystem	21.5		Total	120	472		157	243		
Propulsion	4.1	3	Link Budget							
Telecommunications	6.70		Distance from Earth [AU]			0.5	1		1.5	
Payload	7.5		Data Rate [kbps]			66	16.	7	7.4	
Total Dry Mass (20% margin)	72.8		<i>C/N</i> ₀			53.7	53.7 47.		44.2	
Propellant (chemical electrical)	11.8 15.4		Volume (without shield) [m ³]			0.102				
Total	100.0		Dimensions (stowed) [cm]			86.0 x 78.0 x 77.2				

POWER SUBSYSTEM:

Solar arrays (2.32 m²) Lithium-Ion secondary batteries STARBUCK Mini (PCDU)

RISKS ANALYSIS



RELIABILITY ANALYSIS

Twofold reliability analysis performed through Weibull's distributions:

- First analysis (a): specific mission scenario → only most stressed subsystem contributes to reliability in each phase.
- Second analysis (b): worst case scenario → all the subsystems are always considered on

0.86 < R < 0.90

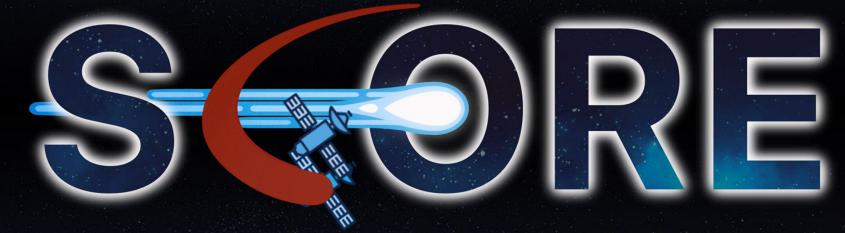
CONCLUSIONS

- Mission feasible in terms of risk assessment
- Mission feasible in terms of mass and size constraints
- Study demonstrates the feasibility of future scientific interplanetary missions with micro-nano satellites
- Flexibility of mission phases due of the probabilistic nature of the problem

Critical Aspects of the mission:

- Cometary environment: need of a more accurate model
- Development of the electric thruster (TRL 5): development carefully monitored
- The target will be known once the satellite is on orbit → the specific mission scenario will be determined during the mission initial phases.

Post flyby phase


HT400 Electric Thruster

Flyby phase

Transfer phase

Parking phase

THANK YOU FOR YOUR ATTENTION!