The 7th Mission Idea Contest Lecture Series For Deep Space Science and Exploration

Deep Space Exploration and Micropropulsion

Hiroyuki Koizumi

- Associate Professor, The University of Tokyo - CTO, Pale Blue Inc.

images-assets.nasa.gov/image/PIA22690/PIA22690~orig.jpg

©NASA

© NASA images-assets.nasa.gov/image/PIA22690/PIA22690~orig.jpg

Anonymous comment app.

Freely input your question, comments, & impressions.

URL : (check a chat) https://commentscreen.co m/comments?&id=IcjvccN IaUTKK9q6NqZh

GEORGE P. SUTTON | OSCAR BIBLARZ

WILEY

by G.P. Sutton & O. Biblarz

Classical & popular

Old but new (9th Edition)

Not recommend Jpn ver. (old and expensive)

There is Kindle ver

by C. D. Brown

Chemical propulsion

- Mono-propellant
- Bi-propellant
- Solid rocket
- Cold-gas

Physics of Electric Propulsion

ROBERT G. JAHN

by R.G. Jahn

Classical & popular

Technologically Old, but long seller = good book

There are Paper back ver & Kindle ver

PL Space Science and Technology Serie Joseph H. Yuen, Series Editor

Fundamentals of Electric Propulsion

Ion and Hall Thrusters

Dan M. Goebel Ira Katz

by D.M. Goebel & I. Katz

Technologically new

Focusing on ion/Hall thruster

1 : Fundamentals

2: Chemical Propulsion 3: Electric Propulsion 4: Micropropulsion

Just falling Going to the center by energy loss

NGCC CELET

DRO

Velocity Increment: ΔV

How to change the orbit Adding velocity (acceleration)

Velocity increment: ΔV

How to gain velocity?

Push something!

A315

Nothing You need to bring something to push

©NASA https://images.nasa.gov/details-iss040e012013.html How_does_a_rocket_work?

Mass Δm is released from a spacecraft at a velocity u in time Δt

Impulse = Momentum increment $F\Delta t = \Delta m u$ $F = \dot{m} u$: mass flow rate

World's Launch Vehicles

Engine	Launcher	Propellant	Ex Vel.	Thrust
F1	Saturn V	LOX/RP-1	3.0 km/s	7.7 MN
RD-107	Soyuz	LOX/RP-1	3.1 km/s	1.0 MN
RD-264	Dnepr	N2O4/UDMH	3.2 km/s	4.5 MN
SSME	Shuttle	LOX/LH2	4.5 km/s	2.2 MN
LE7A	H2A	LOX/LH2	4.3 km/s	1.1 MN
Vulcain2	Arian 5	LOX/LH2	4.3 km/s	1.3 MN
SSRB	Shuttle	Composite	2.7 km/s	13.8 MN
SRB-A	H2A	Composite	2.8 km/s	2.3 MN
M-V-1	M-V	Composite	2.8 km/s	2.4 MN

Exhaust velocity is a key

Propulsion = Energy converter

$(Any \rightarrow Kinetic energy)$

✓ Chemical propulsion Chemical E → Kinetic E Exhaust velocity : 1 – 4 km/s

✓ Electric propulsion Electric E → Kinetic E Exhaust : 10 - 50 km/s

1: Fundamentals 2: Chemical Propulsion

3: Electric Propulsion 4: Micropropulsion **Chemical Propulsion; Processes**

Chemical energy

By combustion

Thermal energy Nozzle theory

By a rocket-nozzle

Kinetic energy

Chemical Propulsion; Overview

Solid, liquid, and/or gas

Pressure thrust

Pressure difference of the front and back sides applies another thrust:

$$F = \dot{m}u_e + (p_e - p_a)A_e$$

 $F = \dot{m}u_e + (p_e - p_a)A_e$

…Actual "exhaust velocity" is not enough

Introducing a new velocity: Effective Exhaust Velocity

$$c \equiv \frac{F}{\dot{m}}$$

"g" is just by custom.

$$c = g I_{sp}$$
 (think about 10 times diff.)

e.g. c = 4000 m/s $I_{sp} = 408 \text{ s}$ c = 30000 m/s $I_{sp} = 3060 \text{ s}$

Rocket Nozzle; Quasi-1D&Isotropic

Government Equations

Mass conservation $d(\rho uA) = 0$ Eq.(1)

Momentum conservation $d(\rho u^2 A) = -Adp \dots Eq.(2)$

Unknowns

$$u = u(x)$$

 $\rho = \rho(x)$
 $p = p(x)$
 $T = T(x)$

Energy conservation $c_v dT + pd\left(\frac{1}{\rho}\right) = 0 \dots \text{Eq.(3)}$

Equation of state

 $p = R\rho T$ Eq.(4)

Rocket-nozzle_thrust

$$F = \dot{m}u_e + (p_e - p_a)A_e$$

= $A_t p_0 \sqrt{\frac{2\gamma^2}{\gamma - 1} \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{\gamma - 1}} \left\{1 - \left(\frac{p_e}{p_0}\right)^{\frac{\gamma - 1}{\gamma}}\right\}} + (p_e - p_a)A_e$
= $A_t p_0 C_F$

$$C_{F} = \sqrt{\frac{2\gamma^{2}}{\gamma - 1} \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{\gamma - 1}} \left\{1 - \left(\frac{p_{e}}{p_{0}}\right)^{\frac{\gamma - 1}{\gamma}}\right\}} + \left(\frac{p_{e}}{p_{0}} - \frac{p_{a}}{p_{0}}\right) \frac{A_{e}}{A_{t}}$$

C_F: Thrust coefficient, 推力係数 Depending on the aperture ratio and gas type Expressing the acceleration of the gas by the nozzle

Exit Pressure & Aperture Ratio

Mass conservation between throat and exit

Thrust Coefficient

Rocket Thrust

$$F = \dot{m}u_e + (p_e - p_a)A_e$$
$$= A_t p_0 C_F$$
$$= \dot{m}c^* C_F$$

$$c^* \equiv \frac{A_t p_0}{\dot{m}} = \sqrt{\frac{RT_0}{\gamma} \left(\frac{\gamma+1}{2}\right)^{\frac{\gamma+1}{\gamma-1}}}$$

c*: Characteristic velocity (c star),特性速度 — Depending on the temperature and gas type Expressing the performance of combustion chamber

Characteristic Velocity

Solid motor; Structure

Double-based propellant

Nitroglycerin (NG, $C_3H_5(ONO_2)_3$) : Fuel&Oxidizer \rightarrow Liquid, Plasticizer, High reactivity, O rich

Nitrocellulose (NC , $C_{12}H_{14}(ONO_2)_6O_4$) : Fuel&Oxidizer \rightarrow Solide, Binder, Stable, F rich

Composite

Double-based

Composite Propellant

Oxdzr : Ammonium perchlorate (AP), etc

Fuel : Polymer, Binder, Polyvinyl Chloride (PVC), Hydroxyl-terminated polybutadiene (HTPB), Powdered metal (Al)

Combustion structure (DB)

Burning Rate and Burning Area

Gas exhausted from the nozzle $\dot{m}_t = \frac{A_t P_c}{c^*}$

Gas generated by combustion

$$\dot{m}_b = \rho_b A_b r$$

r: Burning rate (e.g. cm/s) A_b : Burning area ρ_b : Solid propellant density

Liquid Engine; Structure

Propellant tank

Oxygen (O2)

Boiling point 90 K→ specific gravity 1.14 LOX: Liquid Oxygen The most popular as oxidizer

Nitrogen tetroxide, NTO (N2O4) \cong MON

Boiling point 294 K \rightarrow specific gravity 1.45 Popular by good storability

Hydrogen peroxide (H2O2)

Can be reacted using a catalyst

Red fuming nitric acid (RFNA: HNO3+NO2(5-20%)) Higher E than HNO3. High toxicity

Hydrogen (H2)

Boiling point 20 K→Specific G 0.07 (low density) Flammable in air

Low molecular mass, and high Isp

Hydrocarbon-based fuel (Kerosene, RP-1)

RP-1: highly refined for rocket engine Boiling point 500 K, SG 0.81 (289K) Good availability and good handling ability

Hydrazine (N2H4: CH1.97), MMH, UDMH

Boiling point 387 K, SG 1.02 (293K) Toxic, spontaneous combustion in air Reaction using a catalyst (mono-propellant)

MMH: Monomethylhydrazine

UDMH: unsymmetrical dimethylhydrazine

C. Propulsion of Space Probes

	Fuel	Oxd.	#	Thrust/N
Bepicolombo (MPO)	MMH	N2O4	8	5 & 22
Hayabusa1/2	Hydrazine	N2O4	8	20
Mars Global Surveyor	Hydrazine	N2O4	13	4.4 & 600
Galileo	MMH	N2O4	13	10 & 400
Shuttle RCS	MMH	N2O4	44	110 & 3870
Viking Orbiter	MMH	N2O4	1	1330

Liquid Engine; Structure

Blow Down Feed System

High pressure gas Inside the tanks Pressure change By the gas usage Change of the flow rate

Gas Pressure Regulator System

Pressure regulator

Reducing the input pressure of a fluid to a desired value at its output.

The simplest thruster

1: Fundamentals 2: Chemical Propulsion

3: Electric Propulsion

4: Micropropulsion

 $CP \quad (Chemical E \rightarrow Kinetic E)$

 $u_e = 5 \text{ km/s}$

Mass & energy are coupled \rightarrow Velocity limit Actual limit: about 4.5 km/s

Energy Arbitrarily Propellant No velocity limit

Exhaust velocity can be increased by electric propulsion

Possible: Over 90% payload for $\Delta V=10$ km/s (e.g. 100 km/s propulsion for Jupiter)

But, it's not an all-rounder

Small thrust (~ 0.1 N) Long operation time (~ 1 year)

Energy conservation

By solar array panel (limited) $T = \frac{1}{2}Fu_e T = \frac{1}{2}M_{sc}\Delta V u_e$ Energy conversion eff.

Operation time

High velocity & Long time

A:NO

Why ? If the available power is limited, the operation time is too long.

$\Delta V = 13 \text{ km/s}$

1000 $M_{\rm PLD} =$ g $P_{\rm EP} = 10 \ \rm kW$

AV U $M_p = M_{PLD} \{ \exp \}$

images-assets.nasa.gov/image/PIA22690/PIA22690~orig.jpg

©NASA

$\Delta V = 13 \text{ km/s}$

$M_{PLD} = 1000 \text{ kg}$ $P_{EP} = 10 \text{ kW}$ $U_e = 1000 \text{ km/s}$ $\eta_{EP} = 50 \%$

images-assets.nasa.gov/image/PIA22690/PIA22690~orig.jpg

By solar array panel (limited) $T = \frac{1}{2}Fu_e T = \frac{1}{2}M_{sc}\Delta V u_e$ Energy conversion eff.

Operation time

High velocity & Long time $M_{\rm PLD} = 1000 \, {\rm kg}$ $P_{\rm EP} = 10 \, {\rm kW}$ $U_{\rm e} = 1000 \, {\rm km/s}$ $\eta_{\rm EP} = 50 \, \%$

 $F_{\rm EP} = 10 \ {
m mN}$ $\dot{m}_{EP} = 10 \ {
m \mu g/s}$ $M_{\rm EP} = 13 \ {
m kg}$

$\tau_{\rm EP} = 41$ year

 $M_{\rm PLD} = 1000 \, {\rm kg}$ $P_{\rm EP} = 10 \, {\rm kW}$ $U_{\rm e} = 30 \, {\rm km/s}$ $\eta_{\rm EP} = 50 \, \%$

 $F_{\rm EP} = 0.3 \, {
m N}$ $\dot{m}_{EP} = 10 \, {
m mg/s}$ $M_{\rm EP} = 542 \, {
m kg}$

$\tau_{\rm EP} = 1.5$ year

 $M_{\rm PLD} = 1000 \, {
m kg}$ $P_{\rm EP} = 1000 \, {
m W}$ $U_{\rm e} = 10 \, {
m km/s}$ $\eta_{\rm EP} = 50 \, {
m \%}$

 $F_{\rm EP} = 1 \ {
m N}$ $\dot{m}_{EP} = 0.1 \ {
m g/s}$ $M_{\rm EP} = 2670 \ {
m kg}$

$\tau_{\rm EP} = 0.8 \, {\rm year}$

 $M_{\rm PLD} = 1000 \, {\rm kg}$ By CP $U_{\rm e} = 2.5 \, {\rm km/s}$

$M_{\rm EP} = 180,000 \, {\rm kg}$ Operation time: 10 min. Flying time: 2-6 years

A : NO

Why ? Even if you increase the power to shorten the operation time, Solar array mass increases more than the propellant reduction.

 $M_{\rm PLD} = 1000 \, {\rm kg}$ $P_{\rm EP} = 10 \, {\rm kW}$ $U_{\rm e} = 30 \, {\rm km/s}$ $\eta_{\rm EP} = 50 \, \%$

 $F_{\rm EP} = 0.3 \ {
m N}$ $\dot{m_{EP}} = 10 \ {
m mg/s}$ $M_{\rm EP} = 542 \ {
m kg}$

$\tau_{\rm EP} = 1.5$ year

 $M_{\rm PLD} = 1000 \, {\rm kg}$ $P_{\rm EP} = 300 \, {\rm kW}$ $U_{\rm e} = 1000 \, {\rm km/s}$ $\eta_{\rm EP} = 50 \, \%$

 $F_{\rm EP} = 0.3 \ {
m N}$ $\dot{m_{EP}} = 0.3 \ {
m mg/s}$ $M_{\rm EP} = 13 \ {
m kg}$

$\tau_{\rm EP} = 1.4$ year

Solar array mass : 30-50 W/kg 100 kW & 3000 kg

©NASA https://images.nasa.gov/details-0700860.html $M_{\rm PLD} = 1000 \, {\rm kg}$ $P_{\rm EP} = 300 \, {\rm kW}$ $U_{\rm e} = 1000 \, {\rm km/s}$ $\eta_{\rm EP} = 50 \, \%$ $F_{\rm EP} = 0.3 \, {\rm N}$ $m_{EP} = 0.3 \, {\rm mg/s}$ $M_{\rm EP} = 13 \, {\rm kg}$

$\tau_{\rm EP} = 1.4 \, {\rm year}$ $M_{\rm SAP} = 9,900 \, {\rm kg}$

Optimum_exhaust_velocity_

Thrust Efficiency
$$\eta_{\rm th} = \frac{\dot{m}_{\rm prop}V_{\rm e}^2}{2P_{\rm s}}$$

*P*_s: Available Power

Specific power of solar cell panels
$$a=P_s/m_{panel}$$
 (W/kg)

$$\beta = m_{panel}/P_s (kg/W)$$

Typical $\beta = 0.05 kg/W$

Propellant consumption rate

$$\dot{m}_{\rm prop} = m_{\rm prop} / \tau$$
 τ : Transfer Time

$$m_i = m_{pay} + \beta P_S + m_{prop}$$

Optimum exhaust velocity

Optimum exhaust velocity

Deep Space Exploration and Micropropulsion; Feb. 25th (2021)

Resistojet thruster

Application: many Working fluid: hot gas W.F. generation: resistive heating Acceleration: nozzle Exhaust velocity (typical): 1 – 5 km/s Power (typical): 10 W – 2 kW

Deep Space Exploration and Micropropulsion; Feb. 25th (2021)

Arcjet thruster

Application: many Working fluid: plasma W.F. generation: arc discharge Acceleration: nozzle Exhaust velocity (typical): 5 – 10 km/s Power (typical): 1 – 2 kW Arc discharge (plasma) Nozzle acceleration

Deep Space Exploration and Micropropulsion; Feb. 25th (2021)

Gridded_ion_thruster

Application: many Working fluid: plasma W.F. generation: DC-discharge, RF, microwave Acceleration: Electrostatic, 1 kV Exhaust velocity (typical): 30 km/s Power (typical): 0.5 – 2.0 kW

Deep Space Explora

Hall effect thruster

Application: many Working fluid: plasma W.F. generation: DC-discharge Acceleration: Electrostatic, 300 V Exhaust velocity (typical): 15 km/s Power (typical): 0.5 – 2.0 kW

Deep Space Exploration and Micropropulsion; Feb. 25th (2021)

Field emission electric propulsion

Application: 20 in space Working fluid: ionized liquid metal W.F. generation: field emission Acceleration: Electrostatic, 10 kV Exhaust velocity (typical): 50 km/s Power (typical): 40 W

Deep Space Exploration and Micropropulsion; Feb. 25th (2021)

Electrospray thruster

Application: a few demonstrations Working fluid: ionized/droplet ionic liquid W.F. generation: field emission/Tayler-cone Acceleration: electrostatic, 1-3 kV Exhaust velocity (typical): 10-20 km/s Power (typical): 5 W

Deep Space Exploration and Micropropulsion; Feb. 25th (2021)

Pulsed plasma thruster

Application: several demonstrations Working fluid: plasma W.F. generation: pulsed arc discharge Acceleration: electromagnetic/electrothermal, 1-3 kV Exhaust velocity (typical): 5-20 km/s Power (typical): 10 W

1: Fundamentals
2: Chemical Propulsion
3: Electric Propulsion

4: Micropropulsion

What is micropropulsion?

Just Small

There are difficulties in miniaturization of technology. The performance becomes lower (it's nature, unavoidable). If you are a developer, it's a big challenge, but if you are a user, what you do is to select the suitable one.

1: Fundamentals
2: Chemical Propulsion
3: Electric Propulsion

4: Micropropulsion

4.A: Key words4.B: How to choose?4.C: Recent trend4.D: Pickup

1.Different roles

I. High specific impulse

II. Multiaxis thrust

III. High thrust

Orbit transfer

Drag compensation

Unloading

Rendezvous

Insertion Escaping

Landing

Emergency

Miniaturization as system Still small-satellites have little resource

2.Unified propulsion

PROCYON:

Ion thruster

Cold-gas thruster

By gas-sharing

ArgoMoon:

Green-mono

Cold-gas thruster

By plenum-gas usage

3. Safety

vs. Regulation

High-pressure gas system (dry) 4.5 kg

vs. Safety review

Are there many choices?

Yes, too many

Some are really good thrusters. Some are different from the data sheet. Some may not work at all…

Which should you choose?

Enough information?

NOT only performance, but principle, photo, dimensions, etc. are important.
Is that principle feasible?
Was it measured? How?
Do they publish it at conferences/journals?

What is getting attention ?

The best place to check the trend of small satellites: Small Satellite Conference

✓ More industry side rather than academic
 ✓ Single-session presentation & huge exhibition
 ✓ ⇒ Severe selection ⇒ good index
 ✓ SSC2020 was online

Propulsion topics at SSC-2019/2020

x2

Green monopropellant thruster

Electric propulsion X3

Hybrid thruster Cold-gas thruster

x2

Propulsion topics at SSC-2019/2020

x2

✓ High thrust✓ Safety

Green monopropellant thruster

 \mathbf{v}

✓ High ∆V
 ✓ Safety
 Electric
 propulsion
 X3

✓ High thrust✓ Safety

Hybrid thruster ✓ High reliability
 ✓ Safety
 Cold-gas thruster
 X2

"Safety" is the KEY

✓ High thrust✓ Safety

Green monopropellant thruster ✓ High ∆V
 ✓ Safety
 Electric
 propulsion

✓ High thrust✓ Safety

Hybrid thruster High reliability
 Safety
 Cold-gas thruster

Degree of "Safety" is different

> AF-M315E = NH_3OHNO_3 , etc > LMP-103S = $NH_4(NO_2)_2N$, etc

✓ Safety

Green monopropellant thruster Electric propulsion

Safety
 Water
 Teflon
 Indium

 Safety
 Hybrid thruster
 ABS + Gas O₂
 ABS + O₂/N₂O

MarCO has a multiaxis-thruster system using cold-gas (R134a).

Cold-gas thruster module (2U) by Vacco for MarCO

> CAGE NO.: 99517 SN: 0003 FO-0002000-01

AACCO PRODUCTS PRODUCTS Sqim ODJew

FEEP

By ENPULSION

- Indium
- 0.9 kg, 40 W, 5000 Ns, 0.35 mN, 2000 s
- Operation in 2018 April !!

ENPULSION NANO

Image courtesy of ENPULSION©, All rights reserved.

Iodine ion thruster; BIT-3

By Busek Co. Inc.

- iodine
- 3.0 kg, 80 W, 40000 Ns, 1.24 mN_2600 s
- Planned in 2019 by SLS-EM1

Water Unified Propulsion

By Pale Blue Inc.

- Water ion thruster & Water Resistojet thruster
- Size 90x90x123 mm³, <2.2 kg, Water < 0.3 kg
- IT: 300 µN, 600 s, T: 1 mN, 70 s x4
- Planned in 2022 by JAXA Innovative Program-3

Image courtesy of Pale Blue Inc.[©], All rights reserved.

Thruster nam e		Size	N	Total Impulse Ns		Power W	
		U	-				
Aerospace	MEMS	0.18	5	7		N A	
U of Texas	Custom	0.40	1	56		2	
SFL	CNAPS	1.58	4	106		4	
M IT	SiEPS	0.20	1	116		2	
Busek	BET-100	0.40	1	175		6	
Busek	µ-resistojet	4.00	4	8		6	
			1	240		15	
Busek	μPPT	0.50	1	252		2	
GW U	μCAT	0.20	4	570		10	
Vacco	MarCO prop.	1.50	8	755		15	
CUA/Vacco	CH IPS	1.60	1	814		30	
			4	511		N A	
Hyperion	PM 200	1.00	1	920		6	
A erojet RD	MPS-130	1.00	4	1200		17	
Tethers U	HYDROS-C	2.00	1	2150		20	
Phase Four	RFT	1.00	1	2200		100	
Enpu ls ion	IFM Nano T	1.00	1	5000		40	
U of Tokyo	Unified	2 00	1	5100		47	
	W water	5.00	4	870		19	
Busek	B IT –3	1.60	1	20600		56	

Thruster nam e		Size	N	Propellant	Thrust
		U	-	-	m N
Aerospace	MEMS	0.18	5	HFC236fa	100.0
U of Texas	Custom	0.40	1	HFC236fa	110.0
SFL	CNAPS	1.58	4	SF ₆	50.0
M IT	SiEPS	0.20	1	EM I-BF ₄	0.1
Busek	BET-100	0.40	1	EM I-Im	0.1
Busek	µ-resistojet	4.00	4	Ammonia	0.5
		4.00			10.0
Busek	μPPT	0.50	1	PTFE	0.5
GW U	μCAT	0.20	4	N ickel	0.0
Vacco	MarCO prop.	1.50	8	HFC236fa	25.0
CUA/Vacco	CH IPS	1.60	1	R134a	30.0
			4		18.0
Hyperion	PM 200	1.00	1	$Propane/N_20$	500.0
A erojet RD	MPS-130	1.00	4	AF-M 315E	1.3
Tethers U	HYDROS-C	2.00	1	W ater	1.2
Phase Four	RFT	1.00	1	Xenon	5.2
Enpu ls ion	IFM Nano T	1.00	1	Ind ium	0.4
U of Tokyo	Unified	3 00	1	W ater	0.3
	W water	5.00	4		3.9
Busek	B IT –3	1.60	1	Iod ine	0.7

Thruster nam e		Size	N	Propellant	GHS	NFPA		4
		U	-	-	#	В	R	Y
Aerospace	MEMS	0.18	5	HFC236fa	4,7	1	0	1
U of Texas	Custom	0.40	1	HFC236fa	4,7	1	0	1
SFL	CNAPS	1.58	4	SF ₆	4	2	0	0
M IT	SiEPS	0.20	1	EM I-BF ₄	7	3	1	0
Busek	BET-100	0.40	1	EM I-Im	6	2	1	0
Busek	µ-resistojet	4.00	4	Amm on ia	4, 5, 7, 9	3	0	0
Busek	μPPT	0.50	1	PTFE	N C	1	0	0
GWU	μCAT	0.20	4	Nickel	2,7,8	2	1	0
Vacco	MarCO prop.	1.50	8	HFC236fa	4,7	1	0	1
CUA/Vacco	CH IPS	1.60	1	R134a	4	2	1	0
Hyperion	PM 200	1.00	1	Propane/N ₂ 0	2,3,4	2	4	0
A erojet RD	MPS-130	1.00	4	AF-M315E	1,6,7,8	3	0	0
Tethers U	HYDROS-C	2.00	1	W ater	N C	0	0	0
Phase Four	RFT	1.00	1	Xenon	4	0	0	0
Enpu ls ion	IFM Nano T	1.00	1	Indium	8	2	0	0
U of Tokyo	Unified W water	3.00	1	W ater	NC	0	0	0
Busek	B IT –3	1.60	1	Iod ine	5,6,7,9	3	0	0

Thank you